
Engineering Open Source Projects
Anton Grishin (@alchemmist)
Введение в курс EOSP.

https://t.me/alchemmist
https://github.com/alchemmist/eosp

Содержание
hello Лучше познакомимся друг с другом.
open-source Погружаемся в мир OpenSource.
course Разберём, что нас ждёт на курсе.
practice Придумаем название для проекта вместе.
live-demo Закладываем основу проекта вместе.
api Познакомимся с GitHub API.
github-flow Как организованы процессы разработки Open Source.

Давайте познакомимся
Что здесь неверно?
Я Антон. Учусь на 2 курсе SWE в Central University.
Участвовал в разработке 70+ репозиториев и сделал ~1600 коммитов.
Я выпускник Яндекс Лицея с золотым сертификатом.
Использую Linux как основную операционную систему последние 3 года.
Я могу печатать 120 слов в минуту на клавиатуре qwerty.
Раньше был профессиональным волейболистом.
Использую только терминал для разработки.
Автор блога: alchemmist.xyz

https://github.com/alchemmist
https://alchemmist.xyz/?utm_source=slides

Расскажите о себе

Что такое Open Source
Исходный код проекта открыт для всех.
Можно копировать? Можно использовать? Можно продавать?

Postgres DBMS (MIT/BSD)
Полный доступ к исходному коду
Использование в коммерческих продуктах
Продажа как часть своего продукта
Закрытие своего кода поверх PostgreSQL
Сохраняйте лицензию и имя автора

Postgres PRO (EULA)
EULA — лицензионное соглашение с конечным
пользователем
Распространяется за деньги
Модель OpenCore

Angular JS (MIT)
Полностью открыт (как Postgres)
Репозиторий существует, но устарел
Нет поддержки
Нет улучшений
Нет исправлений ошибок
Причина — переход на TypeScript

Ядро Linux (GPLv2)
Полный доступ к исходному коду
Использование в коммерческих продуктах
Форки должны оставаться под GPL при распространении:
копилефт

OpenSource — основа современной IT-индустрии
Пространство, где появляются технологии.

Идея и цель нашего проекта
Курс полностью практико-ориентированный.
Построить практическую систему оценки вклада разработчиков на основе активности в GitHub
Изучить модульный дизайн ПО: library → CLI → Telegram bot
Практиковать реальные Open Source workflow: issues, pull requests, reviews и т.д.
Сосредоточиться на чистом, поддерживаемом и тестируемом коде
Испытать CI/CD пайплайны, релизы и автоматизацию деплоя
Документировать, настраивать и организовывать проекты правильно
Развить навыки создания презентаций и публичной демонстрации проекта

Два основных сценария
HR хочет быстро получить информацию о деятельности
разработчика без ручного просмотра GitHub
Анализировать весь профиль GitHub: все репозитории,
вклад и история активности
Понять, какие языки и технологии использует
разработчик
Отслеживать вклад по репозиториям: коммиты, pull
requests, issues
Составить краткое резюме профиля для рекрутинговых
решений

Руководители команд хотят видеть продуктивность команды
Анализировать вклад внутри одного репозитория для
справедливого сравнения членов команды
Отслеживать метрики каждого разработчика: качество кода,
участие в ревью, решение задач
Выявлять, кто активно вносит вклад, а кто нуждается в
поддержке
Предоставлять честные, основанные на данных
рекомендации для улучшения взаимодействия в команде

Три настройки, три проекта
Вычислять метрики вклада
разработчика из данных GitHub
Предоставлять переиспользуемые,
модульные функции для расчёта
метрик
Включать комплексные unit-тесты и
следовать TDD
Служить основой для CLI и
интеграции с ботом
Поддерживать лёгкое расширение и
сопровождение

Предоставлять командный доступ к
библиотеке метрик
Поддерживать несколько команд,
флагов и опций
Удобно получать, отображать и
экспортировать данные
Корректно обрабатывать ошибки и
показывать информативные
сообщения
Интеграция с CI/CD для
автоматических релизов

Обеспечивать удобный доступ к
метрикам через интерфейс Telegram
Взаимодействовать с пользователями,
обрабатывать команды и запросы
Безопасно управлять секретами и
токенами API
Получать данные из библиотеки и
форматировать их для удобного
отображения
Поддерживать уведомления,
обновления и автоматические
оповещения

Как воспринимать этот курс?
Мотивация и настрой.

Пора придумать название!
Перейдите к Figma board!

https://www.figma.com/board/or8qJTXL7iF7vnPMqwgaeL/eosp-brainstorm?node-id=0-1&t=wzrFKYsRS5GCFwnN-1

Сделаем первый шаг
Создание GitHub организации и репозитория.

Введение в GitHub API.
gh api /octocat

https://api.github.com/octocat

GitHub API — это просто HTTP
Любой инструмент, умеющий отправлять HTTP-запросы, может работать с GitHub API.
gh — удобная оболочка для API
curl — raw HTTP из терминала
Python — программный доступ для автоматизации и логики

Официальный gh cli
Утилита CLI для работы со всеми возможностями GitHub из терминала.
Установка в shell:

И попробуйте что-то, например:

В результате:

Mac:
brew install gh

Windows:
winget install --id GitHub.cli

Arch:
sudo pacman -S github-cli

gh api /users/alchemmist

{
 "login": "alchemmist",
 "avatar_url": "https://avatars.githubusercontent.com/u/104511335?v=4",
 "html_url": "https://github.com/alchemmist",
 "followers_url": "https://api.github.com/users/alchemmist/followers",
 "subscriptions_url": "https://api.github.com/users/alchemmist/subscriptions",
 "repos_url": "https://api.github.com/users/alchemmist/repos",
 "type": "User",
 "name": "Anton Grishin",
 "blog": "alchemmist.xyz?utm_source=github",
 "location": "Russia, Moscow",
 "email": "anton.ingrish@gmail.com",
 "followers": 18,
 "created_at": "2022-04-27T14:12:26Z",
 "updated_at": "2026-01-09T06:23:55Z",
 ...
}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

Подробнее в документации

https://cli.github.com/manual/gh_api

Используем curl для GitHub API
Raw HTTP-запросы из терминала.
Отправка GET с аутентификацией:

Согласно документации:
w — начало недели, задано как Unix timestamp.
a — количество добавлений
d — количество удалений
c — количество коммитов

В результате:

curl -L \
 -H "Accept: application/vnd.github+json" \
 -H "Authorization: Bearer <TOKEN>" \
 -H "X-GitHub-Api-Version: 2022-11-28" \
 https://api.github.com/repos/alchemmist/eosp/stats/contributors

[{
 "total": 37,
 "weeks": [{
 "w": 1765670400,
 "a": 6477,
 "d": 0,
 "c": 1},
 {"w": 1768089600,
 "a": 0,
 "d": 0,
 "c": 0}, ...
],
 "author": {
 "login": "alchemmist",
 "id": 104511335,
 "node_id": "U_kgDOBjq3Zw",...
 }
}]

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

Вс, 14 Дек 2025

https://docs.github.com/en/rest/metrics/statistics?apiVersion=2022-11-28#get-all-contributor-commit-activity
https://en.wikipedia.org/wiki/Unix_time

Подробнее в документации

https://docs.github.com/en/rest

GitHub API с Python
Эффективные, параллельные, продакшн-запросы.
Пример с httpx : Результат:

*GraphQL — язык запросов для API, позволяющий запрашивать
ровно необходимые данные в одном запросе, без лишних
полей.

import asyncio, httpx

async def fetch_prs(username):
 url = f"https://api.github.com/search/issues?"\
 f"q=author:{username}+type:pr+created:>2025-01-01"
 async with httpx.AsyncClient() as client:
 resp = await client.get(
 url,
 headers={
 "Authorization": "Bearer <TOKEN>"
 },
)
 data = resp.json()
 for pr in data["items"]:
 print(f"{pr['title']}\n\t-> {pr['html_url']}")

asyncio.run(fetch_prs("alchemmist"))

Add alchemmist.xyz individual blog
-> https://github.com/kilimchoi/engineering-blogs/pull/1201

Add alchemmist.xyz personal blog
-> https://github.com/learn-anything/blogs/pull/21

Add alchemmist.xyz blog
-> https://github.com/logancyang/awesome-personal-websites/pull/1

Add alchemmist.xyz blog
-> https://github.com/jkup/awesome-personal-blogs/pull/173

Add @alchemmist_blog to personal blogs section
-> https://github.com/goq/telegram-list/pull/992

Add @alchemmist_blog to personal blogs section
-> https://github.com/alchemmist/telegram-list/pull/1

Add a "quiet" exit (#104)
-> https://github.com/cqfn/aibolit/pull/818

Ограничения GitHub API
Rate limit: 5000 запросов/час для аутентифицированных
Rate limit: 60 запросов/час для неаутентифицированных
Пагинация: максимум 100 элементов на страницу, нужно обрабатывать страницы
Приватные данные требуют корректной аутентификации и прав (scopes)
GraphQL vs REST: иногда проще через GraphQL, но сложные запросы могут достигать лимитов
Ответы API могут кешироваться; для актуальных метрик возможны повторные запросы
Эндпоинты могут меняться; библиотека должна учитывать версионирование API

Workflow разработки
Два подхода к разработке.
Git Flow
Структурированная, процессно-
тяжёлая модель ветвления,
рассчитанная на запланированные
релизы. Долгоживущие ветки, явное
управление релизами →
предсказуемо, но медленно
адаптируется.

main

develop

feature

release

hotfix

0-1
78

ee
25

1-f
5b

59
51

2-6
75

62
32

4-8
b0

35
44

7-0
ef5

0b
f

GitHub Flow
Лёгкий workflow для continuous deliver
Open Source. Ветка main всегда готов
деплою; все изменения проходят чере
pull requests.

main

feature-login

feature-api

0-1
65

a7
2e

1-b
48

97
b8

2-6
65

ab
26

3-c
c9

97
2b

5-b
3c

b7
61

6-b
f6f

18
d

7-0
86

57
9e

8-e
99

c4
78

10

Почему GitHub Flow?
Все изменения через pull requests → code review и CI/CD проверки
Поощряет маленькие инкрементальные изменения, вместо долгих веток
Ветка main всегда готова к деплою
Интеграция с issues и project boards → планирование и трекинг
Прозрачность: команда может комментировать, ревьювить, одобрять или отклонять изменения

Основные сущности GitHub Flow
Описывает баг, фичу, задачу или
вопрос. Начальная точка для
разработки.

Изолированная рабочая ветка для
конкретной фичи или исправления.

Отдельные изменения, отслеживаемые
в истории Git.

Предлагает изменения из ветки в main.
Облегчает ревью и обсуждение.

Команда проверяет PR, чтобы
обеспечить качество и
поддерживаемость кода.

Автоматические тесты, линтеры,
сборка и пайплайны деплоя.

Одобренный PR сливается в main и
обычно запускает деплой.

GitHub Flow на практике
Найти баг или фичу → создать issue
Создать ветку от main для этой issue
Делать коммиты и пушить на GitHub
Открыть pull request, связав с issue
Code review и автоматические CI/CD проверки
После одобрения PR сливается в main
Деплой запускается автоматически (если настроено)

Найти баг / Нужна фича

Создать Issue

Обсуждение /
Планирование

Открыть Pull Request

CI проверки PR

Ревью PR командой

Слить PR в main

Лучшие практики GitHub Flow
Короткоживущие ветки → частая интеграция снижает конфликты
Понятные коммиты → информативная история
Ссылки на issues в PR → контекст
Шаблоны PR и issues → стандартизация
Автоматизация → CI/CD, тесты, линтеры, проверки
Культура ревью → лучший код, обмен знаниями, ответственность

END

