
Engineering Open Source Projects

Introduction to the EOSP course, winter 2026. CU ⨯ CPM

Anton Grishin (@alchemmist)

https://t.me/alchemmist
https://github.com/alchemmist/eosp

Table of contents

hello Getting to know each other better.

open-source Diving into the World of OpenSource.

course Figure out what awaits us in the course.

practice Come up with a name for the project together.

live-demo Lay the foundation for the project together.

api Getting to know the GitHub API.

github-flow How are Open Source development processes organized.

February 18th, 2026

1 / 32

Let’s get acquainted

I'm Anton. Study at 2nd course of SWE at Central University.

Involved in the development of 70+ repositories and have sent ~1600 commits.

I'm graduate of Yandex Lyceum golden certificate.

I used Linux as main operation system for last 3 years.

I can type 120 words per minute on qwerty keyboard.

I used to be a professional volleyball player.

I am using only terminal for developing.

Author of blog: alchemmist.xyz

hello

What do you think false here?

February 18th, 2026

1 / 32

https://github.com/alchemmist
https://alchemmist.xyz/?utm_source=slides

Tell us about yourself
hello

February 18th, 2026

What is Open Source

Open to copy? Open to appropriate? Open to sell?

open-source

Source code of project is open to see for everyone.

February 18th, 2026

Postgres DBMS (MIT/BSD)

Full access to the source code

Use in commercial products

Selling as part of your own product

Closing your code on top of PostgreSQL

Please, save the license and author name

open-source

Postgres PRO (EULA)

EULA — End User License Agreement

Distributed for a money

OpenCore model

open-source

Angular JS (MIT)

Fully open (as Postgres)

Repo is exist, but deprecated

No support

No improves

No bug fixes

The reason is switched on TypeScript

open-source

1 / 32

Linux kernel (GPLv2)

Full access to the source code

Use in commercial products

Forks must remain GPL if distributed:

copyleft

open-source

1 / 32

OpenSource is the foundation of modern IT
open-source

A space where technology is emerging.

February 18th, 2026

1 / 32

«99% of Fortune 500 companies currently use open source software. <...>

Over 56 million developers are contributing to open source projects.

<...> Due to ever-rising workloads, the Linux operating systems market

is expected to grow at the rate of 7% a year, reaching $9.7 billion by

2024.»

Pranay Ahlawat, Boston Consulting Group

Article «Why You Need an Open Source Software Strategy», April 2021

February 18th, 2026

1 / 32

https://web-assets.bcg.com/pdf-src/prod-live/open-source-software-strategy-benefits.pdf

The idea and goal of our project

Build a practical system to evaluate developer contributions based on GitHub activity

Learn modular software design: library → CLI → Telegram bot

Practice real-world Open Source workflows: issues, pull requests, reviews and so on

Focus on clean, maintainable, and testable code

Experience CI/CD pipelines, releases, and deployment automation

Document, setting and organize projects properly

Develop skills to build slide deck and pitch project publicly

course

Course is totally practice-driven.

February 18th, 2026

1 / 32

Two main problem cases

Profile analytics

HR wants quick insight into a developer’s

activity without digging into GitHub manually

Analyze the entire GitHub profile: all

repositories, contributions, and activity history

Understand which languages and technologies a

developer uses

Track contributions across repositories: commits,

pull requests, issues

Generate a concise profile summary for

recruitment decisions

Leader board of team

Team leads want visibility into team

productivity

Analyze contributions within a single repository

to compare team members fairly

Track per-developer metrics: code quality, review

participation, issue resolution

Identify who is actively contributing and who

may need support or guidance

Provide fair, data-driven insights to improve

collaboration and team performance

course

February 18th, 2026

1 / 32

Three setups, three projects

Python library

Calculate developer

contribution metrics from

GitHub data

Provide reusable, modular

functions for metrics

computation

Include comprehensive unit

tests and follow TDD approach

Serve as the core foundation for

CLI and bot integrations

Support easy extension and

maintainability

CLI

Provide command-line access

to library metrics

Support multiple commands,

flags, and options

Enable fetching, displaying,

and exporting data

conveniently

Handle errors gracefully and

show meaningful messages

Integrate with CI/CD for

automated releases

Telegram bot

Provide easy access to metrics

via Telegram interface

Interact with users, handle

commands and queries

Securely manage secrets and

API tokens

Fetch data from library and

format it for user-friendly

display

Support notifications, updates,

and automated alerts

14 / 32

course

February 18th, 2026

1 / 32

How should this course be perceived?
course

Motivation and mindset.

1 / 32

«It's a bit sad to think of all the high school kids turning their

backs on building treehouses and sitting in class dutifully learning

about Darwin or Newton to pass some exam, when the work that made

Darwin and Newton famous was actually closer in spirit to building

treehouses than studying for exams.»

Paul Graham

Essay «A Project of One’s Own», June 2021

February 18th, 2026

1 / 32

https://paulgraham.com/own.html

It’s time to come up with a name!
practice

Go to Figma board!

February 18th, 2026

1 / 32

https://www.figma.com/board/or8qJTXL7iF7vnPMqwgaeL/eosp-brainstorm?node-id=0-1&t=wzrFKYsRS5GCFwnN-1

Let’s make first step
live-demo

Creating GitHub organization and repo.

February 18th, 2026

1 / 32

Introduction to GitHub API.
api

gh api /octocat

1 / 32

https://api.github.com/octocat

GitHub API is just HTTP

gh — convenient wrapper around the API

curl — raw HTTP from terminal

Python — programmatic access for automation and logic

api

Any tool that can send HTTP requests can work with GitHub API.

February 18th, 2026

1 / 32

Official gh cli

Install into your shell:

And try something, for example:

As result:

api

The cli utility for using all github functionality from terminal.

Mac:

brew install gh

Windows:

winget install --id GitHub.cli

Arch:

sudo pacman -S github-cli

gh api /users/alchemmist

{

 "login": "alchemmist",

 "avatar_url": "https://avatars.githubusercontent.com/u/104511335?v=4",

 "html_url": "https://github.com/alchemmist",

 "followers_url": "https://api.github.com/users/alchemmist/followers",

 "subscriptions_url": "https://api.github.com/users/alchemmist/subscriptions",

 "repos_url": "https://api.github.com/users/alchemmist/repos",

 "type": "User",

 "name": "Anton Grishin",

 "blog": "alchemmist.xyz?utm_source=github",

 "location": "Russia, Moscow",

 "email": "anton.ingrish@gmail.com",

 "followers": 18,

 "created_at": "2022-04-27T14:12:26Z",

 "updated_at": "2026-01-09T06:23:55Z",

 ...

}

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

February 18th, 2026

1 / 32

More in documentation
api

February 18th, 2026

1 / 32

https://cli.github.com/manual/gh_api

Using curl for GitHub API

Send GET authenticated request:

According to the documentation

w — Start of the week, given as a Unix timestamp.

a — Number of additions

d — Number of deletions

c — Number of commits

As result:

api

Raw HTTP requests from terminal.

curl -L \

 -H "Accept: application/vnd.github+json" \

 -H "Authorization: Bearer <TOKEN>" \

 -H "X-GitHub-Api-Version: 2022-11-28" \

 https://api.github.com/repos/alchemmist/eosp/stats/contributors

[{

 "total": 37,

 "weeks": [{

 "w": 1765670400,

 "a": 6477,

 "d": 0,

 "c": 1},

 {"w": 1768089600,

 "a": 0,

 "d": 0,

 "c": 0}, ...

],

 "author": {

 "login": "alchemmist",

 "id": 104511335,

 "node_id": "U_kgDOBjq3Zw",...

 }

}]

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

Sun Dec 14 2025

February 18th, 2026

1 / 32

https://docs.github.com/en/rest/metrics/statistics?apiVersion=2022-11-28#get-all-contributor-commit-activity
https://en.wikipedia.org/wiki/Unix_time

More in documentation
api

1 / 32

https://cli.github.com/manual/gh_api

Using GitHub API with Python

Example with httpx :
As result:

*GraphQL — a query language for APIs that lets you

request exactly the data you need in a single query,

without extra fields.

api

Efficient, parallel, production-ready requests.

import asyncio, httpx

async def fetch_prs(username):

 url = f"https://api.github.com/search/issues?"\

 f"q=author:{username}+type:pr+created:>2025-01-01"

 async with httpx.AsyncClient() as client:

 resp = await client.get(

 url,

 headers={

 "Authorization": "Bearer <TOKEN>"

 },

)

 data = resp.json()

 for pr in data["items"]:

 print(f"{pr['title']}\n\t-> {pr['html_url']}")

asyncio.run(fetch_prs("alchemmist"))

Add alchemmist.xyz individual blog

-> https://github.com/kilimchoi/engineering-blogs/pull/1201

Add alchemmist.xyz personal blog

-> https://github.com/learn-anything/blogs/pull/21

Add alchemmist.xyz blog

-> https://github.com/logancyang/awesome-pers...

Add alchemmist.xyz blog

-> https://github.com/jkup/awesome-personal-blogs/pull/173

Add @alchemmist_blog to personal blogs section

-> https://github.com/goq/telegram-list/pull/992

Add @alchemmist_blog to personal blogs section

-> https://github.com/alchemmist/telegram-list/pull/1

Add a "quiet" exit (#104)

-> https://github.com/cqfn/aibolit/pull/818

February 18th, 2026

1 / 32

GitHub API Limitations

Rate limits: 5000 requests per hour for authenticated users

Rate limits: 60 requests per hour for unauthenticated users

Pagination: most endpoints return max 100 items per page, need to handle paging

Private data requires proper authentication and scopes

GraphQL vs REST: some data easier via GraphQL, but query complexity may hit limits

API responses may be delayed or cached; real-time metrics may require retries

Some endpoints change over time; library must handle API versioning

api

Understanding these limits is essential when building scalable, reliable systems for collecting GitHub data.

February 18th, 2026

1 / 32

Developing flows

Git Flow

A structured and process-heavy branching model designed

for scheduled releases. It relies on long-lived branches and

explicit release management, which makes it predictable but

slower to adapt.

main

develop

feature

release

hotfix

0-c
92

1e
aa

1-8
b1

a2
23

2-f
9c

fa1
d

4-e
8d

4d
f2

7-0
f75

e9
d

GitHub Flow

A lightweight workflow optimized for continuous delivery

and open source. The main branch is always deployable,

and all changes flow through pull requests.

main

feature-login

feature-api

0-3
39

34
e1

1-5
f00

d4
2

2-a
38

29
6a

3-9
d0

ad
cf

5-7
01

e0
16

6-4
49

ef7
e

7-b
15

b7
f7

8-9
f6b

45
e

10
-c8

61
dd

4

github-flow

Two ways of coding.

February 18th, 2026

1 / 32

Why GitHub Flow?

All changes go through pull requests → code review, CI/CD checks

Encourages small, incremental updates rather than long-lived branches

Clear separation: main branch is always deployable

Integration with issues and project boards → planning and tracking in one place

Transparency and collaboration: team members can comment, review, approve, or reject changes

github-flow

February 18th, 2026

1 / 32

Key Entities in GitHub Flow

Issue

Describes a bug, feature, task, or

question. Starting point for

development.

Branch

Isolated workspace for a specific

feature or fix.

Commit

Individual changes tracked in Git

history.

Pull Request (PR)

Proposes changes from a branch into

main. Facilitates review and

discussion.

Code Review

Teammates review PRs to ensure

quality and maintainability.

CI/CD Checks

Automated tests, linting, build, and

deployment pipelines.

Merge

Approved PR is merged into main

and usually triggers deployment.

github-flow

February 18th, 2026

1 / 32

GitHub Flow in Action

1. Developer identifies a bug or feature → creates an issue

2. Creates a branch from main for the issue

3. Makes commits locally and pushes to GitHub

4. Opens a pull request linking to the issue

5. Team conducts code review and automated CI/CD checks

6. After approval, PR is merged into main

7. Deployment triggers automatically (if CI/CD is configured)

Find a bug / Need feature

Create Issue

Discussion / Planning

Open Pull Request

PR Checks with CI

Reviewer Reviews PR

Merge PR into main

github-flow

Visual representation of the workflow:

February 18th, 2026

1 / 32

Best Practices in GitHub Flow

Keep branches short-lived → frequent integration reduces conflicts

Write descriptive commits → history becomes meaningful

Reference issues in PRs → link work to context

Use templates for PRs and issues → standardize workflow

Automate as much as possible → CI/CD, tests, linters, code quality checks

Encourage review culture → better code, knowledge sharing, accountability

github-flow

February 18th, 2026

1 / 32

END

1 / 32

